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addresses both issues of certainty and consensus among finitely many investigators over 

a finite partition of statistical hypotheses, assuming they share an increasing sequence of 

observations from random sampling.   

 

Savage offers these findings as a partial defense against the accusation, voiced by 

frequentist statisticians of the time, that the theory of (Bayesian) personalist statistics is 

fraught with subjectivism and cannot serve the methodological needs of the Scientific 

community, where objectivity is required.  The central theme in Savage’s response is to 

understand ‘objectivity’ in terms of shared agreements about the truth, particularly, when 

the shared agreements arise from shared statistical evidence.  
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space is uncountable, instead require that they agree with each other about which events 

in this uncountably infinite space of observables have probability 0.  They share in a 

family of mutually absolutely continuous probability distributions.  If the agents’ personal 

probabilities over these infinite spaces also are countably additive, then strong-law 

convergence theorems yield strengthened results about asymptotic consensus (see, e.g. 

Blackwell and Dubins, 1962) and also about asymptotic certainty for events defined in 

the space of sequences of increasing shared evidence.   We discuss several of these 
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Though he does not explicitly formulate criteria for immodesty, based on the examples 

and analysis he offers, we understand Belot’s primary requirements to be these two6:  

• Topological 
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humility.  They promote excessive apriorism with respect to ordinary properties of 

limiting frequencies.  

 

The Bayesian convergence-to-the-truth results that are the subject of Belot’s complaints 

are formulated as probability strong-laws that hold almost surely or almost everywhere.   

In order to make clear why we think Belot’s verdict is mistaken thinking these results 

about convergence to the truth are a liability for Bayesian theory, revisit the familiar 

instance of the strong law of large numbers, as reported in fn. 4. 

 

Let <W, B, P> be the countably additive measure space generated by all finite sequences 

of repeated, probabilistically independent [iid] flips of a “fair” coin.  Let 1 denote a 

“Heads” outcome and 0 a “Tails” outcome for each flip.  Then a point x of W is a 

denumerable sequence of 0s and 1s, x = <x1, x2, … >, with each xn Î {0, 1} for n = 1, 2, 

… .   Let Xn(x) = xn designate the random variable corresponding to the outcome of the 

nth flip of the fair coin.   B is the Borel s-algebra generated by rectangular events, those 

determined by specifying values for finitely many coordinates in W.  P is the countably 

additive 



! 3!

of the continuum.8  When 2w is equipped with the infinite product of the discrete 
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Unless a probability model P for a sequence of relative frequencies assigns probability 1 

to the set of sequences of observed frequencies that oscillate maximally, then P assigns 

positive probability to a meager set of sequences, in violation of Condition #2.  

Evidently, the standard for epistemological modesty formalized in Topological Condition 

#2, which requires meager sets of relevant events be assigned probability 0, itself leads to 

probabilistic orgulity because it requires an unreasonable a priori opinion about how 

observed relative frequencies behave.  Let P satisfy Condition #2.  Given evidence of a P-

non-null observation
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frequency hypothesis in question:  At each stage of her investigation, looking forward, 

she remains practically certain that her posterior probability will converge to the true 

limiting frequency hypothesis.   

 

Second, the credal state P in Elga’s example fails what we call Belot’s Condition #1.  P 

assigns probability 1 to a meager set of sequences of observations.  Hence, though Elga 

argues that P is modest with respect to one 
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additive 
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since it is then following a P1/10, 9/10 law.)  Then, for each e > 0 there exists integer 

ne, 
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As required for Elga’s construction, this finitely additive probability P behaves as Pp,q.  

Its distribution is the iid product of a Bernoulli-p distribution on finite dimensional sets, 

and is the iid product of a Bernoulli-q distribution on the tail-field events.15   P satisfies 

the weak-law of large numbers over finite sequences with Bernoulli parameter p and 

satisfies the strong-law of large numbers 
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the same probability to each finite history of coin flips.  Letting hn denote a specific 

history of length n,  

    P5/10, 1/10 (hn) = P5/10, 9/10 (hn) = 2-n. 

But then    P’(L1/10 | hn) = P’(L9/10 | hn) = ½ = P’(L1/10) = P’(L9/10),  

for each possible history.   That is, contrary to the strengthened convergence-to-the-truth 

result, in this modified P’-model, the agent is completely certain that her posterior 

probability for either of the two tail-field hypotheses, L1/10 or L9/10, is stationary at the 

prior value 1/2.  Under the growing finite histories from each infinite sequence of coin 

flips, the posterior probability moves neither towards 0 nor toward 1.  Within the P’-

model, surely there is no convergence to the truth about these two tail-field events given 

increasing evidence from coin-flipping.16  

 

Evidently, one aspect of what is unsettling about these finitely additive coin models is 

that the observed sequence of flips is entirely uninformative about the change point 

variable, N.   No matter what the observed sequence, the agent’s posterior distribution for 

N is her/his prior distribution for N, which is a purely finitely additive distribution 

assigning 0 probability to each possible integer value for N.  It is not merely that this 

Bayesian agent cannot learn about the value of N from finite histories.  Also, two such 

agents who have finitely additive coin models that disagree only on the tail-field 

parameter cannot use the shared evidence of the finite histories to induce a consensus 

about the tail-field 
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opinion.  Peirce asserts that the scientific method for resolving such disputes wins over 

other rivals (e.g., apriorism, or the method of tenacity) by having the Truth (aka 

observable Reality) win out – by settling debates through an increasing sequence of 

observations from well designed experiments.  With due irony, much of Peirce’s proposal 

for letting Reality settle the intellectual dispute is embodied within personalist Bayesian 

methodology.17  Here, we review some of those Bayesian resources regarding three 

aspects of immodesty. 

 

One kind of epistemic immodesty is captured in a dogmatic credal state that is immune to 
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Not surprising then, as the community R increases its membership, the kind of consensus 

that is assured – the version of community-wide probabilistic merging that results from 

shared evidence – becomes weaker.  So, one way to assess the epistemological 

“immodesty” of a credal state formulated with respect to a measurable space <X, B> is to 

identify the breadth of the community R  of rival credal states that admits merging 

through increasing shared evidence from B.  For example, the agent who thinks each 

morning that it is highly probable that the world ends later that afternoon has an 

immodest attitude because there is only the isolated community of like-minded pessimists 

who can reconcile their views with commonplace evidence that is shared with the rest of 

us. 

 

When the different opinions do not satisfy the requirement of mutual absolute continuity, 

the previous results do not apply directly.  Instead, we modify an idea from Levi [1980, 

§13.5] so that different members of a community of investigators modify their individual 

credences (using convex combinations of rival credal states) in order to give other views 

a hearing and, in Peircean fashion, in order to allow increasing shared evidence to 

resolve those differences. 

 

Let I = {i1, … } serve as a finite or countably infinite index set, and let R = {Pi: i Î I} 

represent a community of investigators, each with her/his own countably additive 

credence function Pi on a common measurable space <X, B>.  It may be that, pairwise, 

the elements of R  are not even mutually absolutely continuous.  In order to allow new 

evidence to resolve differences among the investigators’ credences for elements of B 

(rather than trying, e.g., to preserve common judgments of conditional credal 

independence between pairs of elements of B) each member of R shifts to a credal state 

by taking a mixture of each of the investigators’ credal states: a “linear pooling” of those 

states.  Specifically, for each i Î I, let 7! 8%{aij: aij > 0, 
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assumptions for the Blackwell-Dubins’ result (***) despite being self-centered.  

Depending upon the size of the community R, using the replacement credal states {Qi} 

results (1), (2), and (3) obtain. 

 

We conclude this discussion of probabilistic merging with a reminder that merely finitely 

additive probability models open the door to reasoning to a foregone conclusion, Kadane 

Schervish, and Seidenfeld [1996], in a different sharp contrast with the P’ model above to 

the almost sure asymptotic merging and convergence-to-the-truth results associated with 

countably additive probability models.  Key to these asymptotic results for countably 

additive probabilities is the Law of Iterated Expectations.   

 

Let X and Y be (bounded) random variables measurable with respect to a countably 

additive measure space <W, B, P>.  With E[X] and E[X | Y = y] denoting, respectively, the 

expectation of X and the conditional expectation of X, given the event Y = y, then   

Law of Iterated Expectations  E[X] = E[ E[X | Y] ]. 

 

As Schervish et al. established [1984], each merely finitely (and not countably) additive 

probability defined on a 

Let 
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frequencies.  In addition, the P-model fails Condition #1, which we understand is one of 

Belot’s standards for modesty.  

 

As we illustrate in Section 3, the conditional probabilities arising from 
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sample paths of X.  We denote elements of SX as y = <y1, y2, …>.   SX is a subset of c
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For each y Î SX, define t0(y) = 0, and for j > 0, define 

                               ì>;<%D< L M53+"N(O%N) B % F5EH% if the minimum is finite, 
 tj(y)  =       í 
         î   ¥ %             if  not. 

Let B = {y Î SX : M5"N( < ¥ for all j}, and let A  =  SX \ B  =  Bc Ç SX. 

 

Note that A is the set of sample paths each of which fails to visit at least one of the Bj sets 

in the order specified.  Because we do not require that the sets Bj are nested, it is possible 

that the sequence reaches Bk for all k > j without ever reaching Bj.  Or the sequence could 

reach Bj before reaching Bj-1 but not after. 

 

Theorem A1:  A is a meager set.  

Proof: Write A = Èj Cj, where Cj = {y Î SX: M5"N( = ¥}. Then A is meager if and only if 

Cj is meager for every j. We prove that Cj is meager for every j by induction. 

 

Start with j = 1. We have M5"N( = ¥ if and only if  y Î C1  =  %9
)*+ {y Î SX: yn Î F+

P}.  To 

see that C1 is meager, notice that Q+
P = R)

9
)*+ , where 

   D1 = SX Q q paÁ- p p paÁ- Æíta-ÇíÆ tì
cm BT tp p p tp p p Tm ³TTÆp paÁ- ÁpaÁ- -ìÁ p  p tp  Æt -Á
cmcÇî ÆÆcaîaîcíc
ÆtÆatÆìÇ ÁííaÇÇcÇ ÆtÆaîtîÁ Áíícp t shiw paÁ sng w ] TJ ET Q q BT - ÆÆ paÁ- Á-íaÁîÇc --Áatì
cm BT tp p p tp p p Tm ³TTcî c  s}w Tp 

))
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